体视显微镜发展历程

2016-08-02新闻资讯

在19世纪中期,弗朗西斯·赫伯特威汉姆伦敦设计第一个真正成功的立体显微镜。 威汉姆合并一个新颖的方法,利用消色差棱镜把光束后方的一个目标。 几年后,约翰器皿斯蒂芬森产生类似的工具(见图1),威汉姆双目显微镜设计,遭受工件所带来的单一镜头实际上并没有产生真正的立体效果。
霍雷肖·s·格里诺在1890年代初,美国的仪器设计,引入了一个新颖的设计成为现代stereomicroscopes的祖先。 格里诺相信耶拿的卡尔蔡司公司生产显微镜,而是将格里诺的透镜装配系统,蔡司工程师设计反相棱镜产生勃起的形象。 这个设计已经经受住了时间的考验(大量的显微镜化验员),是一个主力在医学和生物解剖整个二十世纪。 显微镜仍然是一个最喜欢的许多特定的应用程序。
Stereomicroscopes上半年生产的20世纪,或被称为解剖显微镜,就像传统的复合显微镜的时代。 他们是沉重的,构造主要来自黄铜,利用棱镜图像勃起,简单的透镜系统组成的一个或两个对比。 工作距离是成反比的放大,并在最高可用很短的放大。 这些显微镜的使用主要是为了解剖,因为很少有工业应用涉及小程序集所需的显微镜检查。 甚至手表制造商使用单眼loupes !
首先介绍了现代立体显微镜在美国在1957年由美国光学公司。 命名为 Cycloptic ® 设计了一个压铸铝住房,这个突破,不断工作距离(在4英寸,是最长的了),和一个内部放大装置,使得观察者增加目标放大0.7倍到2.5倍的五个步骤。 此外,显微镜利用整块的玻璃装配棱镜,配备各种附件包括站,武器,和照明,符合1950年的样式用深浅不一的灰色油漆方案(见图2)。显微镜的名字是来源于一个大型中央客观的底部的身体左右两个通道累积光从标本。
体视显微镜发展历程和组成结构
在以后的显微镜,更名为Cycloptic特性 常见的主要目标 ( 市场总监 )。 本设计使用一个大的物镜,关注标本时,形成一个图像在无穷远处。 Cycloptic,与大多数早期的立体显微镜的设计,降低了线程的挂载在显微镜体安全目标为位置下方一个可旋转的滚筒,其中包含两对无焦Galilean-style望远镜。 鼓旋转,使用望远镜镜头向前和扭转方向(放大和缩减),产生四种不同的放大。 第五放大是一个开放的通道,没有玻璃。 伽利略焦距透镜系统都有一个小的优势,一个非常小的直径,和很少的放大超过2倍或3倍。 2倍伽利略镜头将提供2倍或1/2x放大,根据定位,配对可以安排生产许多变体。 Cycloptic的头部包含现在被称为 管镜头 、架设棱镜和一双目镜。 这显微镜迅速成为受早期半导体制造商,尤其是西部电气。
两年后(1959年),博士伦Cycloptic竞争引入了立体显微镜,但一个尖端的进步:连续变量,或 变焦,放大。 命名为 StereoZoom ® ,这个显微镜是第一个立体显微镜没有架设棱镜,在基本成形 格里诺 设计,这将在下面详细讨论。 一般都相同的大小和形状Cycloptic(图3),和有一个类似的放大范围(0.7 x 3.0 x)相似的工作距离。 显微镜还出现一个新的博士发明:四个表层镜子增强铝涂料,战略定位倾向棱镜和执行功能 普罗 架设棱镜。 在立体显微镜勃起图片是有用的因为显微镜工作者经常必须执行交互式操作的标本在观察。 任务,如解剖、micro-welding工业组装,或卵母细胞的显微镜下注射更方便当标本进行相同的物理方向镜台上通过目镜能够看到。 同样,真正的标本之间的空间关系特征的研究是自然的帮助下,树立形象。
除了有一个降低成本相比prism-equipped显微镜,StereoZoom也更轻的重量。 基本的显微镜系统或“Pod”,因为它被称为,旁边是一个巨大的选择的辅助镜头,目镜,照明,手臂和站,所有生产创造潮流风格,经历了40多年。 接受的StereoZoom迅速新兴半导体行业是直接和长寿。 这部小说设计为主的立体显微镜市场许多年,直到由徕卡在2000年停止生产,在1980年的美国光学显微镜资源相结合,博士伦,Leitz,锐彻,野生。
体视显微镜发展历程和组成结构
介绍了在1960年的早期,缩放stereomicroscopes尼康,奥林巴斯,Unitron等(不那么广为人知)知名的日本公司开始在美国。 总的来说,日本、美国和欧洲显微镜制造商继续推进的发展“更大更好”stereomicroscopes一系列新特性。 这些进步加速了高速计算机的发明,使其可行的光学设计人员解决复杂问题,建立一个有效的变量放大变焦镜头系统well-corrected光学畸变。
今天的立体显微镜设计特性高数值孔径的目标,得到高对比度的图像,有最少的耀斑和几何失真。 观察管能容纳high-eyepoint目镜有视野26毫米,屈光度调节,使图像和十字线同时合并到一个焦点。 此外,许多模型运动高变焦比率(12 x-15x)提供一个放大范围宽(2 x - 540 x)和减少改变目标的必要性。 人体工程学特性纳入显微镜设计有助于减少疲劳在长时间的操作,和新的配件使现代stereomicroscopes形象不切实际的仅仅几年前的标本。
人类的眼睛和大脑功能一起产生被称为什么 立体视觉 ,它提供了空间,三维图像周围的对象。 这是因为大脑的解释两个图片收到每个视网膜略有不同。 平均人眼相距的距离约为64 - 65毫米,和每只眼睛感知物体从不同的角度,不同几度。 传播到大脑时,图像融合在一起,但仍保持高度的深度知觉,这是真正了不起的。 这个能力感知深度的立体显微镜利用通过传输双图像由小角度倾斜(通常10至12度)产生一个真正的立体效果。
立体显微镜的设计
在一些立体显微镜系统,标本成像利用两个独立的复合显微镜光学火车,每个组成的一个目镜,客观,中间镜头元素。 其他设计采用在两个个体之间共享一个共同的目标光学通道。 两个不同的图像,来自稍微不同的视角,投射到显微镜工作者的视网膜,刺激神经末梢传递到大脑的信息进行处理。 结果是一个三维图像分辨率有限的标本的显微镜光学系统参数和视网膜神经末梢的频率,就像极限粒度在胶卷或像素密度在一个电荷耦合装置(CCD)数码相机
Stereomicroscopes大致可以分为两种基本的家庭,每一个都有正面和负面的特征。 最古老的stereomicroscopic系统,发明者的名字命名的格里诺,利用身体双管,倾向于产生立体的效果。 一个更新的系统,称为共同的主要目标(前面介绍),利用一个大目标之间共享一对目镜管和透镜系统。 要么类型的显微镜可以配备了步进式个人镜头改变放大,或一个连续变量zoom-type放大系统。 下面的讨论解决了格里诺和常见的优缺点主要目标立体显微镜的设计。
体视显微镜发展历程和组成结构
格里诺设计,引入了蔡司的二十世纪,由两个相同的(对称)光学系统每个包含一个单独的目镜和客观准确的定位在一个住房安排(图4)。这个设计的主要优点是可获得的高数值孔径,因为目标是非常相似的设计与运用在古典复合显微镜。 一般来说,身体的下部管,包含的目标,锥形和趋同是最好的重点对象的飞机。 身体的上端管项目的一对图像观察者的眼睛,通常用一双标准的目镜。 大小、焦点、旋转和定心的两幅图像在非常严格的公差必须保持不变,这样眼睛的观点本质上相同的场景。 离开千篇一律是每张图片的略有不同的视角投射到视网膜上。 由于收敛角,一般从10到12度在现代设计中,左眼视图对象从左边,而右眼视图相同的对象从一个稍微不同的角度在右边。
一双架设棱镜或镜像系统利用de-rotate和转化放大图像的目标并将其呈现给观察者看来没有显微镜。 身体管构建提供一个直接视线在某些设计,而另一些人支持与额外的棱镜来允许倾斜管显微镜工作者和更自然的观看位置。 由于成像光线穿过中心的复杂的透镜系统,图像的质量对其中心对称,与大多数复合显微镜一样。 此外,光学畸变校正在Greenough-type显微镜难度比常见的主要目标的设计,因为镜片小,轴向对称,并且不依赖于光线通过客观的外围。
出现变形工件在格里诺显微镜设计由于每个身体的斜分离管从一个共同的轴。 被称为 梯形 效果,这种扭曲导致区域左侧的右眼出现略小于右侧相同的形象,当然也是相反的左眼的图像(见图5)。梯形失真源自于这样一个事实:每个身体管产生的中间图像倾斜的标本飞机,和倾斜相对于彼此,所以只在中部地区同时集中在相同的放大。 视场的结果是,外围部分集中略高于或低于实际标本飞机,有很小的差异放大,尽管眼睛通常弥补这种效应和显微镜学家通常是不明显的。 在长时间的观察期间,可以加速疲劳和紧张梯形的效果。
小变化在整个视野放大,专注在格里诺stereomicroscopes可能注意到照片或视频图像通过一方产生的工具,特别是如果对象主要是平面和直线。 在显微摄影,专注不连续倾角很容易带来补偿通过倾斜标本或光束路径之一,显微镜光轴垂直于飞机横向试样。 十字线进行测量时,线性目镜网格应该定位在一个垂直方向梯形效应降到最低。 另一个解决方案是使标本或显微镜下五或六度和否定收敛。
常见的主要目标立体显微镜设计中心的折射作用单一,大直径物镜,左右两个渠道视图对象。 每个频道经营作为一个独立的光学系统平行于另一个(这是他们也被称为的原因 平行 显微镜,图4),个体之间存在平行光通道和目标(图像投影到无穷大)。 这样的安排保证收敛的左派和右派光学轴配合标本中的焦点平面。 因为这平行轴安排通常是扩展到包括目镜,左边和右边的图像被显微镜工作者的眼睛很少或根本没有收敛。 常见的主要目标系统的一个主要优势是,光轴的目的是正常标本飞机,而且没有固有的目镜焦平面图像的倾斜。
尽管在大多数情况下有通常的10到12度收敛标本,大脑是不习惯解释三维图像没有收敛,导致一个独特的特定于首席营销官stereomicroscopes异常。 当通过这种类型的显微镜观察标本时,中心部分的标本似乎略高,这样一个平面样品现在似乎有一个凸形状。 例如,一枚硬币会出现被厚的中心,所以它将岩石从一边到另一边时倒放在一个平面上。 这个工件是被称为 透视失真 ,但不应引起关注,除非利用显微镜来判断平面度或高度(参见图5)。标本与复杂的或圆形的形状,同时显示一定的透视失真,通常不似乎扭曲了通过立体显微镜能够看到。
体视显微镜发展历程和组成结构
透视失真有时被称为 凸起 或 球状的效果 ,结果从梯形的组合和枕形失真。 为例,提出了在图5中稍微夸张的例子是美国林肯美分,一个碟状平坦的硬币,会出现在立体显微镜严重扭曲的观点。 原分钱顶部的插图显示平面。 下方同时图像投影显微镜的左眼和右眼,这表明一个不对称的枕形失真的中心轴指向显微镜。 最终结果是一个圆顶的感知——或者globe-shaped对象图像时从目镜都投射到视网膜和大脑中融合在一起。 大多数高端研究年级共同产生的主要目标stereomicroscopes主要制造商已经几乎消除了这个工件,但它仍然发生在一些不太昂贵的显微镜。
另一个工件经常遇到常见的主要目标stereomicroscopes是少量的离轴像差如散光,昏迷,横向色差出现在每张图片的中心。 这是因为每个光学通道接收光线从一个不平衡的地区的大目标,而不是直接从中心位置畸变(特别是发生离轴)至少在镜头或几乎不存在最好的光学修正。 效果一般不注意到当两只眼睛是用来查看标本,但显微照片或数字图像可能不对称几何穿过田野。
一般来说,正确的色差是困难和昂贵的,尤其是考虑到大量大小和玻璃生产中使用的目标。 一些首席营销官立体显微镜的设计让这个问题通过提供设施来抵消中央大目标,定位在轴左边或右边的通道。 甚至其他显微镜设计提供了一种手段取代传统的大目标infinity-corrected目的,可以使用视图和标本在高的放大照片(和数值孔径)。
最大的设计特点和实际利用一个共同的主要目标立体显微镜,与大多数现代显微镜一样,是无限远光学系统。 平行光通路,通道两个平行轴,之间存在客观和可移动的头/观察管组装(标记为 无限的空间 在图6)。这使得毫不费力的配件,如分光膜、同轴episcopic照明者、照片或数字视频中间管,管,eyelevel立管,和图像传输管显微镜身体和头部之间的空间。 还可以将这些配件之间的空间目标和变焦的身体,虽然这是很少在实践中来完成的。 由于光学系统产生一个平行束光线之间的身体和显微镜的头,添加的附件不引入显著的畸变或改变图片的位置在显微镜下观察。 这种多功能性不可用在格里诺stereomicroscopes设计原则。
体视显微镜发展历程和组成结构
这是一个艰巨的任务来确定这两个设计(CMO或格里诺)优越,因为没有公认的标准来比较性能之间的立体显微镜系统。 常见的主要目标显微镜,一般来说,有一个更大的聚光能力比Greenough-design和更高度修正光学畸变。 一些观察和显微摄影最好进行利用首席营销官显微镜,而其他情况可能要求格里诺设计独有的特性。 因此,每个技术人员必须确定是否一个设计将更适合手头的任务和使用此信息来制定一项战略,立体显微镜调查。
在大多数情况下,格里诺之间的选择或常见的主要目标stereomicroscopes通常是基于应用程序,而不是一个设计是否优于其他。 格里诺显微镜通常用于“主力”应用程序,如焊接微型电子元件,生物标本,解剖和类似的常规任务。 这些显微镜是相对较小的,便宜的,非常坚固,使用简单,易于维护。 常见的主要目标显微镜通常用于更复杂的应用程序需要与先进的高分辨率光学和照明配件。 这些可用的各种配件显微镜借给他们的力量的研究领域。 在许多工业情况下,格里诺显微镜可能会发现在生产线,而常见的主要目标显微镜是有限的研发实验室。 另一个考虑是购买显微镜的经济学,特别是大规模。 常见的主要目标stereomicroscopes可以花费几倍格里诺显微镜,这是一个主要考虑制造商可能需要成千成百上千的显微镜。 不过,也有例外。 如果一个共同的主要目标显微镜是更好的工具工作,真正的拥有成本可能更低。
在立体显微镜放大:目标和目镜
在立体显微镜总放大实现产品目标和目镜的放大,加上任何中间,或者提供的外部辅助放大透镜系统。 多年来,许多独立的方法已经发展变化(增加或减少)stereomicroscopes的放大倍数。 在最简单的显微镜,目标(或单目标CMO设计)永久性安装在下半身住房、和放大只能改变通过引入不同力量的目镜。 稍微复杂显微镜总放大因素可互换的目标,使调整利用权力或高或低的目标或用不同放大倍数的目镜。 目标在这些模型安装通过螺纹或夹子,这使相对快速转换到一个新的放大。
中层stereomicroscopes配有滑动客观住房或旋转炮塔包含几个匹配集的目标产生不同放大倍数的因素。 为了调整显微镜放大,操作员只需扭曲炮塔的位置一个新的辅助通道管下的成对设置的目标。 显微镜在这个设计曾经非常受欢迎的,但现在很少生产。
高质量stereomicroscopes与变焦镜头系统或装备 旋转鼓 包含伽利略望远镜,用来增加和减少整体放大。 旋转鼓系统功能作为一个整体中间管(或块)包含配对组镜头,可以安装到光学通路通过旋转鼓。 在大多数模型,积极的追随者是用来充当“点击停止”安全镜头安装到正确对齐,并按通知运营商新的放大倍数。 鼓通常有一对空镜头坐骑,没有辅助透镜,可以定位的光学路径允许使用客观、目镜组合没有额外的放大。
体视显微镜发展历程和组成结构
变焦系统(如图7所示)提供了一个连续可变放大范围可以调节将旋钮位于显微镜的外围身上或集成在身体本身。 这个设计可以消除可能发生的blank-out视觉丧失标本之间的空间关系特征改变离散放大时,加强设置。 在一些旧文学,变焦系统通常被称为 变焦系统 希腊词后 潘 “每一个” 奎托斯 “权力”。 缩放比例不同4 : 1、15 : 1、根据显微镜时代制造商和模型。 一般来说,变焦镜头系统包含至少三个透镜组,每组支持两个或两个以上的元素,是战略定位与相互尊重。 通道管中的一个元素是固定的,而其他两个是顺利翻译上下通道内的精密凸轮。 系统设计允许快速和连续的变化放大,同时保持焦点显微镜。 变焦系统后,利用继电器和/或额外的镜头元素建立图像投射到目镜。 新的立体显微镜的几个模型采用积极click-stop警报显微镜工作者在选择放大头寸变焦范围。 这种区别是至关重要的校准以给定的功率放大级的步骤中,一个功能时,经常发现有用执行线性测量。
早期立体显微镜变焦镜头系统的放大范围约7倍到30倍。 放大因素慢慢增长作为这类显微镜光学性能改善,现在和最近的学生显微镜功能变焦范围之间的2倍和70倍。 中层stereomicroscopes变焦放大因素之间具有放大上限250 x 400 x,而高端研究显微镜运动放大系统,可以达到在放大500倍。 这放大范围广是由一系列的景深和工作距离远远大于在复合显微镜有等效的放大。 现代的工作距离stereomicroscopes 20到140毫米之间的不同,这取决于目标放大和缩放比例。 通过添加专门的辅助附件眼镜,工作距离可以达到300毫米以上。 场直径也比那些实现更广泛的复合显微镜。
辅助附件镜头可以安装到客观桶专门设计stereomicroscopes(图8)。一般来说,附件镜头螺纹旋转成一个匹配的线程上设置目标的前面。 其他版本附着在桶夹紧装置。 这些镜头使放大倍数的显微镜工作者要么增加或减少的主要目标。
附件镜头时是有用的图像质量不是最重要的因素,因为光学修正不能准确地执行因为镜头不是安装在相同的位置在每次附呈。 此外,附件镜头修改目标工作距离(样本之间的距离和客观镜头前面元素)。 同时增加显微镜放大镜头也将呈现一个简短的工作距离,而附件镜头,减少放大产生相应的工作距离的增加。
体视显微镜发展历程和组成结构
现代stereomicroscopes配有标准化widefield high-eyepoint目镜中可用的放大5倍到30 x约5倍增加。 可以利用这些目镜有或没有眼镜,和保护橡胶杯可以避免接触显微镜工作者的眼镜和目镜eyelens一样。
目镜通常配备有屈光度调节允许同时聚焦的标本,测量reticles和双目显微镜观测管支架(头)现在有可移动的管子,使操作员改变瞳孔间的距离目镜在55到75毫米。 瞳孔间的调整通常是通过旋转棱镜的身体对光学轴。 由于棱镜目标是固定在他们的关系,调整不会改变立体的效果。 这方便减少疲劳扩展观察时期,但是需要再度调整时所使用的仪器多个运营商。 注意,显微镜工作者正确戴眼镜的近视和视力差异的眼睛也应该戴眼镜的显微镜。 眼镜戴只在观察近距离工作应该删除,因为显微镜产生的图像有一定的距离。
的视野(有时缩写 视场 ),它是可见的,重点在显微镜观察标本时,是由客观的放大和固定字段的大小在目镜隔膜。 放大时增加传统或立体显微镜,如果目镜视场的大小却降低了隔膜直径保持不变。 相反,当放大倍数下降,在固定的视野